

BJT Circuits at DC

Kizito NKURIKIYEYEZU, Ph.D.

Active EBJ:
Forward
Biased
CBJ:
Reverse
Biased

FIG 1. Simplified Models for the Operation of the BJT in DC Circuits

BJT DC analysis steps

Use the following steps when analyzing BJT circuits with DC voltages:
1 Assume that the transistor is operating in active mode.

This analysis is mainly used to identify the operating point.

BJT DC analysis steps

Use the following steps when analyzing BJT circuits with DC voltages:
1 Assume that the transistor is operating in active mode.
2 Determine $I_{C}, I_{B}, V_{C E}$ and $V_{B E}$ using the active mode model.

This analysis is mainly used to identify the operating point.

BJT DC analysis steps

Use the following steps when analyzing BJT circuits with DC voltages:
11 Assume that the transistor is operating in active mode.
2 Determine $I_{C}, I_{B}, V_{C E}$ and $V_{B E}$ using the active mode model.
3 Check for consistency of results with active-mode operation such as $V_{C E}>V_{\text {CEsat }}$.

This analysis is mainly used to identify the operating point.

BJT DC analysis steps

Use the following steps when analyzing BJT circuits with DC voltages:
1 Assume that the transistor is operating in active mode.
2 Determine $I_{C}, I_{B}, V_{C E}$ and $V_{B E}$ using the active mode model.
3 Check for consistency of results with active-mode operation such as $V_{C E}>V_{\text {CEsat }}$.
4 If it is satisfied, the analysis is over.

This analysis is mainly used to identify the operating point.

BJT DC analysis steps

Use the following steps when analyzing BJT circuits with DC voltages:
11 Assume that the transistor is operating in active mode.
2 Determine $I_{C}, I_{B}, V_{C E}$ and $V_{B E}$ using the active mode model.
3 Check for consistency of results with active-mode operation such as $V_{C E}>V_{\text {CEsat }}$.
4 If it is satisfied, the analysis is over.
5 If not, assume saturation mode and repeat the analysis like active mode.
This analysis is mainly used to identify the operating point.

Example I

In Fig. 2, if $\beta=100$ and $V_{B E}=0.7 \mathrm{~V}$, which mode is the transistor operating in?

■ Using Kirchhoff's Voltage Law (KVL) on the base-emitter loop (Equation (1))

$$
\begin{equation*}
4 V=V_{B E}+3.3 \mathrm{k} \Omega I_{E} \tag{1}
\end{equation*}
$$

FIG 2. Example I

Example I

In Fig. 2, if $\beta=100$ and $V_{B E}=0.7 \mathrm{~V}$, which mode is the transistor operating in?

■ Using Kirchhoff's Voltage Law (KVL) on the base-emitter loop (Equation (1))

$$
\begin{equation*}
4 V=V_{B E}+3.3 \mathrm{k} \Omega I_{E} \tag{1}
\end{equation*}
$$

■ Solving Equation (1) gives $I_{E}=1 \mathrm{~mA}$

FIG 2. Example I

Example I

In Fig. 2, if $\beta=100$ and $V_{B E}=0.7 \mathrm{~V}$, which mode is the transistor operating in?

■ Using Kirchhoff's Voltage Law (KVL) on the base-emitter loop (Equation (1))

$$
\begin{equation*}
4 V=V_{B E}+3.3 \mathrm{k} \Omega I_{E} \tag{1}
\end{equation*}
$$

■ Solving Equation (1) gives $I_{E}=1 \mathrm{~mA}$

- The base current I_{B} is calculated from its relationship to the emitter current

$$
\begin{equation*}
I_{B}=\frac{I_{E}}{\beta+1}=9.9 \mu \mathrm{~A} \tag{2}
\end{equation*}
$$

FIG 2. Example I

Example I

In Fig. 2, if $\beta=100$ and $V_{B E}=0.7 \mathrm{~V}$, which mode is the transistor operating in?

■ Using Kirchhoff's Voltage Law (KVL) on the base-emitter loop (Equation (1))

$$
\begin{equation*}
4 V=V_{B E}+3.3 \mathrm{k} \Omega I_{E} \tag{1}
\end{equation*}
$$

■ Solving Equation (1) gives $I_{E}=1 \mathrm{~mA}$

- The base current I_{B} is calculated from its relationship to the emitter current

$$
\begin{equation*}
I_{B}=\frac{I_{E}}{\beta+1}=9.9 \mu \mathrm{~A} \tag{2}
\end{equation*}
$$

- The collector current I_{C} is thus

$$
\begin{equation*}
I_{C}=\beta I_{B}=0.99 \mathrm{~mA} \tag{3}
\end{equation*}
$$

Example I

■ To know the mode of operation of the transistors, we need to know $V_{C E}$.

FIG 3. Example I

Example I

- To know the mode of operation of the transistors, we need to know $V_{C E}$.
- $V_{C E}$ is obtained by applying KVL on the CE loop as shown in Equation (4):

$$
\begin{equation*}
V_{C E}=10 \mathrm{~V}-4.7 \mathrm{kVI}_{C}-3.3 \mathrm{kVI}_{E}=2.047 \mathrm{~V} \tag{4}
\end{equation*}
$$

FIG 3. Example I

Example I

■ To know the mode of operation of the transistors, we need to know $V_{C E}$.

- $V_{C E}$ is obtained by applying KVL on the CE loop as shown in Equation (4):

$$
\begin{equation*}
V_{C E}=10 \mathrm{~V}-4.7 \mathrm{kV} I_{C}-3.3 \mathrm{kVI} I_{E}=2.047 \mathrm{~V} \tag{4}
\end{equation*}
$$

- Since $V_{C E}>V_{C E s a t}$, it is operating in active mode.

FIG 3. Example I

NPN Common-Emitter circuit

- We will assume that the BEJ is forward biased, so the voltage drop across that junction is the cut-in or turn-on voltage $V_{B E}(\mathrm{on})$.

(a) npn transistor common-emitter

(b) dc equivalent circuit.

FIG 4. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

NPN Common-Emitter circuit

- We will assume that the BEJ is forward biased, so the voltage drop across that junction is the cut-in or turn-on voltage $V_{B E}(o n)$.
- The base current is given in Equation (5)

$$
\begin{equation*}
I_{B}=\frac{V_{B B}-V_{B E}(\text { on })}{R_{B}} \tag{5}
\end{equation*}
$$

(a) npn transistor common-emitter

(b) dc equivalent circuit.

FIG 4. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

NPN Common-Emitter circuit

- We will assume that the BEJ is forward biased, so the voltage drop across that junction is the cut-in or turn-on voltage $V_{B E}(o n)$.
- The base current is given in Equation (5)

$$
\begin{equation*}
I_{B}=\frac{V_{B B}-V_{B E}(\text { on })}{R_{B}} \tag{5}
\end{equation*}
$$

- Equation (5) implies that $V_{B B}>V_{B E}$ (on)—which means that $I_{B}>0$. Otherwise, $V_{B B}<V_{B E}$ (on), the transistor is OFF and $I_{B}=0$.

(a) npn transistor common-emitter

(b) dc equivalent circuit.

FIG 4. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

NPN Common-Emitter circuit

- The collector current is given Equation (6)

$$
\begin{equation*}
I_{C}=\beta I_{B} \tag{6}
\end{equation*}
$$

(a) npn transistor common-emitter

(b) dc equivalent circuit.

FIG 5. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

NPN Common-Emitter circuit

- The collector current is given Equation (6)

$$
\begin{equation*}
I_{C}=\beta I_{B} \tag{6}
\end{equation*}
$$

- Kirchhoff's voltage law allows to compute $V_{C C}$ and $V_{C E}$

$$
\begin{align*}
& V_{C C}=I_{C} R_{C}+V_{C E} \tag{7}\\
& V_{C E}=V_{C C}-I_{C} R_{C} \tag{8}
\end{align*}
$$

(a) npn transistor common-emitter

(b) dc equivalent circuit.

FIG 5. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

NPN Common-Emitter circuit

■ The collector current is given Equation (6)

$$
\begin{equation*}
I_{C}=\beta I_{B} \tag{6}
\end{equation*}
$$

- Kirchhoff's voltage law allows to compute $V_{C C}$ and $V_{C E}$

$$
\begin{align*}
& V_{C C}=I_{C} R_{C}+V_{C E} \tag{7}\\
& V_{C E}=V_{C C}-I_{C} R_{C} \tag{8}
\end{align*}
$$

■ Equation (8) implicitly assumes that $V_{C E}>V_{B E}(o n)$-which means that the BCJ is reverse biased and the transistor is the forward active mode

NPN Common-Emitter circuit

- The power dissipated in the transistor is given by Equation

$$
\begin{equation*}
P_{T}=I_{B} V_{B E}(\text { on })+I_{C} V_{C E} \tag{9}
\end{equation*}
$$

(a) npn transistor common-emitter

(b) dc equivalent circuit.

FIG 6. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

NPN Common-Emitter circuit

- The power dissipated in the transistor is given by Equation

$$
\begin{equation*}
P_{T}=I_{B} V_{B E}(\text { on })+I_{C} V_{C E} \tag{9}
\end{equation*}
$$

- However, in most cases $I_{C} \gg I_{B}$ and $V_{C E}>V_{B E}(o n)$. Thus, Equation (9) can be simplified as shown in Equation (10)

$$
\begin{equation*}
P_{T} \approx I_{C} V_{C E} \tag{10}
\end{equation*}
$$

(a) npn transistor common-emitter

(b) dc equivalent circuit.

FIG 6. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

NPN Common-Emitter circuit

- The power dissipated in the transistor is given by Equation

$$
\begin{equation*}
P_{T}=I_{B} V_{B E}(\text { on })+I_{C} V_{C E} \tag{9}
\end{equation*}
$$

- However, in most cases $I_{C} \gg I_{B}$ and $V_{C E}>V_{B E}(o n)$. Thus, Equation (9) can be simplified as shown in Equation (10)

$$
\begin{equation*}
P_{T} \approx I_{C} V_{C E} \tag{10}
\end{equation*}
$$

■ The approximation in Equation (10), however, is not valid in the saturation mode.

(a) npn transistor common-emitter

(b) dc equivalent circuit.

FIG 6. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

Example II

Calculate the base, collector, emitter currents, the $V_{C E}$ voltage and the transistor power dissipation for the common-emitter circuit shown in Fig. 7. Assume $\beta=200$ and $V_{B E}(o n)=0.7 \mathrm{~V}$

■ The base current is found as

$$
\begin{align*}
I_{B} & =\frac{V_{B B}-V_{B E}(\text { on })}{R_{B}} \\
& =\frac{4 V-0.7 V}{20 \mathrm{k}} \tag{11}\\
& =15 \mu \mathrm{~A}
\end{align*}
$$

FIG 7. Example 2

Example II

Calculate the base, collector, emitter currents, the $V_{C E}$ voltage and the transistor power dissipation for the common-emitter circuit shown in Fig. 7. Assume $\beta=200$ and $V_{B E}(o n)=0.7 \mathrm{~V}$

■ The base current is found as

$$
\begin{align*}
I_{B} & =\frac{V_{B B}-V_{B E}(\text { on })}{R_{B}} \\
& =\frac{4 V-0.7 V}{20 k} \tag{11}\\
& =15 \mu \mathrm{~A}
\end{align*}
$$

- The collector current is

$$
\begin{equation*}
I_{C}=\beta I_{B}=200 \times 15 \mu \mathrm{~A}=3 \mathrm{~mA} \tag{12}
\end{equation*}
$$

FIG 7. Example 2

■ The emitter current is

$$
\begin{equation*}
I_{E}=(1+\beta) I_{B}=3.02 \mathrm{~mA} \tag{13}
\end{equation*}
$$

FIG 8. Example 2

■ The emitter current is

$$
\begin{equation*}
I_{E}=(1+\beta) I_{B}=3.02 \mathrm{~mA} \tag{13}
\end{equation*}
$$

- The collector-emitter voltage is

$$
V_{C E}=V_{C C}-I_{C} R_{C}=4 V
$$

FIG 8. Example 2

- The emitter current is

$$
\begin{equation*}
I_{E}=(1+\beta) I_{B}=3.02 \mathrm{~mA} \tag{13}
\end{equation*}
$$

- The collector-emitter voltage is

$$
\begin{equation*}
V_{C E}=V_{C C}-I_{C} R_{C}=4 V \tag{14}
\end{equation*}
$$

- The power dissipated is

$$
\begin{aligned}
P_{T} & =I_{B} V_{B E}(\text { on })+I_{C} V_{C E} \\
& =0.015 \times 0.7+3 \times 4 \\
& =12 \mathrm{~mW}
\end{aligned}
$$

$$
V_{C C}=10 \mathrm{~V}
$$

FIG 8. Example 2

■ The emitter current is

$$
\begin{equation*}
I_{E}=(1+\beta) I_{B}=3.02 \mathrm{~mA} \tag{13}
\end{equation*}
$$

- The collector-emitter voltage is

$$
\begin{equation*}
V_{C E}=V_{C C}-I_{C} R_{C}=4 V \tag{14}
\end{equation*}
$$

- The power dissipated is

$$
\begin{align*}
P_{T} & =I_{B} V_{B E}(\text { on })+I_{C} V_{C E} \\
& =0.015 \times 0.7+3 \times 4 \tag{15}\\
& =12 \mathrm{~mW}
\end{align*}
$$

FIG 8. Example 2

- Since $V_{B B}>V_{B E}(o n)$ and $V_{C E}>V_{B E}$ (on), the transistor is biased in the forward-active mode.

PNP Common-Emitter circuit

- In Fig. 9, the emitter is at ground potential, which means that the polarities of the $V_{B B}$ and $V_{C C}$ power supplies must be reversed compared to those in the npn circuit.

(a) pnp transistor common-emitter

(b) dc equivalent circuit.

FIG 9. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

PNP Common-Emitter circuit

- In Fig. 9, the emitter is at ground potential, which means that the polarities of the $V_{B B}$ and $V_{C C}$ power supplies must be reversed compared to those in the npn circuit.
- The analysis proceeds exactly as before, and we can write:

$$
\begin{gather*}
I_{B}=\frac{V_{B} B-V_{E B}(o n)}{R_{B}} \tag{16}\\
I_{C}=\beta I_{B} \tag{17}\\
V_{E C}=V_{C C}-I_{C} R_{C}
\end{gather*}
$$

(18) FIG 9. Common emitter-Transistor equivalent circuit is shown within the dotted lines with piecewise linear transistor parameters.

Example 3

Find I_{B}, I_{C}, I_{E} and R_{C} such that $V_{E C}=\frac{1}{2} V^{+}$for the circuit given in Fig. 10. Assume $\beta=100$ and $V_{E B}(o n)=0.6 \mathrm{~V}$

$$
I_{C}=\beta I_{B}=(100)(5 \mu \mathrm{~A}) \Rightarrow 0.5 \mathrm{~mA}
$$

and the emitter current is

$$
I_{E}=(1+\beta) I_{B}=(101)(5 \mu \mathrm{~A}) \Rightarrow 0.505 \mathrm{~mA}
$$

For a C-E voltage of $V_{E C}=\frac{1}{2} V^{+}=2.5 \mathrm{~V}, R_{C}$ is

$$
R_{C}=\frac{V^{+}-V_{E C}}{I_{C}}=\frac{5-2.5}{0.5}=5 \mathrm{k} \Omega
$$

In this case, $\left(V^{+}-V_{B B}\right)>V_{E B}(o n)$. Also, because VEC > VEB(on), the pnp bipolar transistor is biased in the forward-active mode.

FIG 10. Example 3

The end

